SCIENCE UPDATE – RESEARCH RELEVANT TO BIOSECURITY IN THE TOP OF THE SOUTH REGION

Oliver FloerI (Cawthron Institute), TOSMBP Management Committee

SABELLA SPALLANZANII IMPACTS, BIOLOGY AND NOVEL DETECTION TOOLS

- 1. Experiments to determine ecological impact of fanworms in soft sediments
- 2. Reproductive biology of Sabella
- 3. Optimisation of eDNA based surveillance tools

1. How does *Sabella spallanzanii* modify the functioning of soft sediment communities?

- 2016 18, Rangitoto Channel
- Transplants worms and mimics
- Density gradients (0-50 per m²)
- 6 months

Examined impacts on:

- Soft-sediment fauna (macro/micro)
- Community respiration
- Denitrification
- Primary productivity

1. How does *Sabella spallanzanii* modify the functioning of soft sediment communities?

- No impacts on sediment biodiversity
- But shifts in the composition of sediment communities
- Increased community metabolism and reduced denitrification
- Worms change structure of abovesediment physical habitat

1. How does *Sabella spallanzanii* modify the functioning of soft sediment communities?

Quantified impacts on ecosystem services

Decision-making for investment in eradication / management

Spatial spread models

Economic valuation of ecosystem services

Impact research leads
Javier.Atalah@cawthron.org.nz
Leigh.Tait@niwa.co.nz

2. PhD project: *Sabella spallanzanii* in the context of mussel farms in the Coromandel

Project aims

- Reproductive cycle and output
- Seasonal presence of larvae around mussel farms
- Larval development and settlement preferences
- Potential for regeneration after fragmentation

Sarah Brand Institute of Marine Science sbra338@aucklanduni.ac.nz

Reproductive cycle and output

- 1,200 worms sampled over 1y
- Worms <5cm (<10cm tube length) generally not reproductively mature
- Sex ratio of 1:1 not confirmed
- Wide range of egg sizes produced each month
- Continuous egg production and gametogenesis, potentially enabling spawning events year-round
- Evidence for a spawning event in Aug/Sept

3. Environmental DNA approaches to finding Sabella (and others)

Marine biosecurity applications

Target species detection

- Species-specific assays
- qPCR, ddPCR
- One-to-few known target taxa
- High specificity

DNA (Deoxyribonucleic acid)

Biodiversity screening

- Community-wide inventories
- HTS metabarcoding
- Multiple taxa, incidental detections
- Validation of positive detections is recommended

RNA (Ribonucleic acid)

Targeted detection surveys to:

- Verify the results of traditional surveillance over various spatial scales
- Assess large-scale pest occupancy (distribution)
- Optimise surveillance designs and management programmes
- Verify eradication success over a constrained area (in prog.)

Method development/optimisation

Sampling methods/matrices: filtered water samples vs settlement plates vs sediment

Analytical platforms: qPCR vs ddPCR vs metabarcoding

International validation and standardization of pipelines

eDNA and eRNA fate in water: Experimental study of shedding and decay rates

Coupling eDNA signals with probabilistic models to:

- Estimate occupancy of the species (accounting for potentially imperfect detection)
- Estimate probability of detection for particular method/ sampling approach
- Design fit-for-purpose surveys optimised detection probabilities for a given sampling effort
- Informed interpretation of non-detections

In development: coupling eDNA with hydrodynamic models and novel sampling methods

	qPCR	ddPCR	COI	185 rRNA
Water				
ψ (SE)			0.74 (0.1)	
θ (SE)			0.91 (0.02)	
p (SE)	0.93 (0.02)	1.0	0.57 (0.05)	0.27 (0.05)
Biofouling				
ψ (SE)			1.0	
θ (SE)			0.91 (0.02)	
p (SE)	0.87 (0.03)	1.0	0.40 (0.04)	0.16 (0.03)

FOR MORE INFORMATION....

Ecological impacts

J. Atalah (Cawthron)

Javier.Atalah@cawthron.org.nz

L. Tait (NIWA)

Leigh.Tait@niwa.co.nz

Reproduction & biology

S. Brand (Univ. of Auckland)

sbra338@aucklanduni.ac.nz

Molecular search tools

Zaiko (Cawthron)

Anastasija.Zaiko@cawthron.org.nz

Other

O. Floerl (Cawthron)

Oliver.Floerl@cawthron.org.nz