Forecasting the spread and impacts of invaders

Top of the South Marine Biosecurity, NIWA and Cawthron Joint Workshop

Tuesday 24<sup>th</sup> July, 2018

Samik Datta<sup>1</sup>, Graeme Inglis<sup>2</sup> and Kim Seaward<sup>2</sup>

<sup>1</sup> Population Modelling group, NIWA Wellington

<sup>2</sup> Marine Biosecurity group,
NIWA Christchurch











## **OVERVIEW**

Introduction

- Motivation
- Data available

Methods

- Dynamic range model
- Epidemiological model
- MCMC scheme

Results

Measuring spread of invasive species









### INTRODUCTION

- Over 360 invasive species have been recorded in New Zealand waters.
- These species can have detrimental effects on existing species, e.g. by outcompeting them for resources or predating upon them.
- Important to understand the dynamics of their spread, for effective management strategies to reduce epidemic sizes.

















### INTRODUCTION

 Data available on the incidence of different invasive species are from a range of sources. These are of two forms.

#### 1. Baseline distributions:

- a) Herbarium / museum records
- b) Literature
- c) Port Biological Baseline Surveys (2001 -2008)

### 2. Monitoring:

- a) Marine High Risk Site Surveillance (MHRSS) program (2002 – current)
- b) Marine Invasives Taxonomic Service (2005 current)



The 11 sites included in the MHRSS program.







### INTRODUCTION

### There are eleven key species of interest:

- 1. Arcuatula senhousia (Asian date mussel)
- 2. Charybdis japonica (Asian paddle crab)
- 3. Eudistoma elongatum (Australian droplet tunicate)
- 4. Ficopomatus enigmaticus (Australian tubeworm)
- 5. Limaria orientalis (file shell)
- 6. Magallana gigas (Pacific oyster)
- 7. Metapenaeus Bennettae (greentail prawn)
- 8. Pyura doppelgangera (sea squirt)
- 9. Sabella spallanzanii (Mediterranean fanworm)
- 10. Theora lubrica (Asian semele)
- 11. Undaria pinnatifida (wakame, edible seaweed)











## **INTRODUCTION**

Examples of presence maps over time are shown below:

#### Asian date mussel



#### Pacific oyster









### **METHODS**

 Dynamic range models (DRMs): used to forecast the time course of spread and impacts, that incorporate global occurrence data, environmental suitability, spread dynamics, demography and impact data.



Area of potential establishment climate and host

#### **Spread**

Point of entry, population biology and spread mechanisms

#### **Impacts**

Economic data and host



The areas of potential establishment for the Mediterranean fanworm.







### **METHODS**

- We have adapted the DRM to a previous individual-based epidemiological model, used to simulate the spread of infection in honeybees in the UK and abroad.
- This model used presence / absence data of infection (including date of inspection, location and owner information) as the input, and Bayesian methods (an MCMC scheme) to fit unknown parameter values.
- The output parameters can be used to simulate epidemics in a stochastic individual-based model, to recreate the epidemic and test management strategies.



A map of the island of Jersey (south of the UK mainland), with links shown between hives owned by the same individual. Heat map shows the likely origin of the epidemic.







## **METHODS**

Two methods of spread in the model:

1) Spatial (diffusive) spread

$$K_{ij} = \frac{1}{d_{ij}^2 + \alpha^2}$$



# 2) Network (saltative) spread









### **METHODS**

Two methods of spread in the model:

## 1) Spatial (diffusive) spread



## 2) Network (saltative) spread



- Commercial vessel traffic data
- Recreational boat movement
- Can be rapid and independent of distance (e.g. size of ports)







### **METHODS**









## **RESULTS**

### Outputs from MCMC scheme









## **RESULTS**

Comparing simulated epidemics with data - map

### **Data**



# Model (example simulation)









### RESULTS

<u>Comparing simulated epidemics with data – proxies for goodness of fit</u>











### **NEXT STEPS**

The next steps for the project include:

- Supplement current presence-only data with presence / absence data, to limit spread.
- Observation bias: Lag in detection, unquantified survey effort in space and time.
- Add in up-to-date vessel movement data for network (long-distance) spread of invasive species.
- Consult with experts to verify model assumptions are appropriate, and prior distributions for unknown parameters are biologically reasonable.
- Carrying out the full analysis on all eleven datasets.
- Simulate possible management strategies to detect and / or mitigate spread of invasive species.











## Acknowledgements

- This research was funded by the Ministry of Business, Innovation and Employment, through contract C01X1511.
- Graeme Inglis and Kim Seaward assembled the data and developed the conceptual basis for the project.
- Thanks to Tarek Soliman and Dong Wang, who developed the initial dynamic range models for use in the project.



## **QUESTIONS?**







