Molecular tools for implementing international ballast water regulations – verification of the ballast water treatment

Anastasija Zaiko*, Susie Wood, Xavier Pochon, Laura Biessy, Olivier Laroche, Peter Croot, Eva Garcia-Vazquez

* Anastasija.Zaiko@cawthron.org.nz

Seaborn trade intensifies, ship sizes increase

What do vessels carry besides cargo?

Ballast water

(tens of thousands tons per ship)

To stabilize the unloaded cargo ship

SOURCE: GloBallast

- Ca. 3-5 billion tonnes of ballast water /year
- 7,000 and 10,000 different species of marine microbes, plants and animals per day

International Convention for the Control and Management of Ship's Ballast Water and Sediments

- Adopted by IMO in 2004
- Came into force on 8 September 2017
- Sets up ballast water quality standards at discharge
- Key question: how to assess compliance to meet BWMC enforcement requirements?
- discharge less than 10 viable organisms per ml in size range 10-50 μm
- restriction of numbers of indicator microbes (bacteria): V. cholereae, E. coli, Enterococci

Adenosine triphosphate assays

@ The University of Walkato I www.sciencelearn.org.nz

But: what does it mean in terms of BW biodiversity and how it relates to different groups of organisms?

Metabarcoding

But: not quite quantitative, if going for DNA metabarcoding – how much bias is introduced by legacy signal?

 'Living' biodiversity: signal from living (biologically active) organisms (more complex and expensive)

ATP measurements vs DNA/RNA metabarcoding:

compare and cross-validate their performance in the context of the BWMC

Aft ballast tank — (70 m³) filled with sea water off the German coast

16S rRNA (bacteria) and 18S rRNA (eukaryotes) metabarcoding

Additionally:

- Physico-chemical parameters of the BW monitored daily (T, DO, N-NH3)
- Microscopy photos taken for reference (≥50 µm fraction)

Physico-chemical conditions and microscopy screening

Dynamics of the ATP signal, pg/m³

high variance between replicates

negative trend in the larger fraction

stable signal in medium fraction

increase in the smallest fraction

Dynamics of the ATP signal, pg/m³

Biodiversity of BW: multivariate analysis (log-transformed OTUs, modified Gower similarity matrix)

Phyla, highly correlated with 2 first axes: 10-50 µm fraction example

- No phyla were highly associated exclusively with DNA
- Radiolaria associated with RNA in earlier samples
- Porifera associated with later samples of DNA and RNA
- A bunch of phyla associated with later samples of RNA
 - Protists, fungi and bacteria feeding on decaying material
 - Ammonia-utilizing bacteria
 - No collinearity of ATP signal with any specific taxa

Summary and conclusions

- Both methods provided complementary information: tiered analytical approach for BW tests?
- High variability among replicate samples: well-designed sampling needed
- No reliable numbers for detailed compliance tests as required by the BWMC
- Reconsider BWMC standards and introduce molecular compliance criteria?

Thank you!

Acknowledgements

People:

Karen Wiltshire (AWI, Germany)

Thomas Wunderlich, Felix Lauber, Olaf Ziemann and the R/V "Polarstern" crew

Funding:

- Cawthron Institute, Internal Investment Fund
- The Spanish Ministry of Economy and Competitiveness MINECO, Grant CGL2016-79209-R

- European Regional Development Fund
- POGO, SMART (Strategic Marine Alliance for Research and Training)
- AWI, NOSOAT 2016

